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AbstracL W mnsider a tworariable model for mllapse in a lattice model of a branched 
polymer in a dilute mlution. W model the palymer as a lattice animal with two fugacities, 
one mrrespanding to monomer-monomer interactions and the other to interadions 
between mdnomers and salvent. We investigate the nature of the phase diagram for this 
madel and show that it mnlains three branches. W alimate the values of the cmsswer 
exponent d along these branches and discuss the relationship to one-variable models. 
In particular, wt show that one point on the phase boundary is related lo a permlation 
transition. 

The collapse. transition in branched polymers in dilute solution has been studied 
theoretically by a number of authors, using a variety of different models. The 
transition from an expanded to a collapsed state can be driven by a cycle fugacity 
(Derrida and Herrmann 1983, Dickman and Shieve 1984, 1986, Lam 1987, 1988, 
G a n g  and Shapir 1988, Madras ef a1 1990, Vanderzande l w ) ,  by a contact fugacity 
(Madras et al 1990, Gaunt and Flesia 1991, Flesia and Gaunt 1992) or by a solvent 
fugacity (Flesia 1992). Physically we expect both the interaction between pairs of 
monomers, and the interaction between monomen and solvent to be important and! 
in this paper, we introduce a two-variable model which explicitly includes both of 
these terms. In principle this idea can be applied both to trees and to animals but we 
concentrate on the animal problem because the phase diagram has a richer structure. 
Because of Euler's relation, there is a connection between the numbers of monomer- 
monomer contacts, monomer-solvent contacts, and cycles, so that this twowariable 
model can be re-expressed in terms of any pair of these quantities. Euler's relation 
also allows the model to be related to the weak and strong embedding versions of 
the above one-variable models. 

We focus on the square lattice though many of our results are more generally 
applicable. Consider a lattice animal, weakly embedded in the square lattice, with 
n vertices, e edges and with cyclomatic index c. We define a contuct as a pair 
of nearest-neighbour occupied vertices not directly connected by an occupied edge. 

a neighbouring unoccupied vertex. If the number of contacts is k and the number of 
solvent contacts k s, then (using Euler's relation) 

s = 2n + 2 - 2c -2k. 

simiiariy we define a $obmi coniaci a edge -which Joim a v-eriex of iije anha; io 

(1) 
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We define the canonical partition function 

Z,(P1,Pd = x a , ( s , k ) e B ' " + 8 z k  
s,k 

where an(s,  k)  is the number of animals with n vertices, s solvent contacts and k 
contacts. It can he shown that the limiting reduced free energy 

F(P,, a) = dimm log 2, w,, p2) (3) 

exists and is a convex function of PI and pz. Moreover, F( pi,  p2) is monotone 
increasing and continuous. 

This model is related to several one-variable models. Clearly, setting p, = 0 gives 
the contact model, and setting p2 = 0 gives the solvent model. In addition, it follows 
from (1) that the line pZ = 20, corresponds to the cycle model. Consequently we 
expect transitions for a positive value of pz when p, = 0, for a negative value of 
p, when pz = 0 and for a negative value of pL (and also a negative value of p2, of 
course) when p2 = 2p,. 

It is also possible to relate the model to percolation, and this yields a singular 
point along a particular curve in the (pI,p2) plane. For a k e d  origin on the lattice, 
we define P , ( p )  as the probability that the cluster containing the origin consists of 
n vertices, at edge occupation probability p .  Then 

where Q " , ~ , ~ , ~  is the number of clusters with n vertices, e edges, s solvent contacts 
and k contacts. Using Euler's relation and summing over e 

P,(p)  = n p z n C a , ( s , k ) p - ~ ' 2 - k ( l - p ) s + k  

s .k  (5) 
= n P 2 " Z n ( P l > 1 3 z )  

where eo1 = ( l - p ) / J j i  and ea2 = (1- p ) / p .  These equations define parametrically 
a curve in the (PI,&) plane along which the lattice animal problem is isomorphic to 
the edge percolation problem. We call this the percolalion cuwb 

The decay of the cluster size distribution P , , ( p )  is well understood, and the 
behaviour above and helow the percolation threshold p ,  is quite different (see e.g. 
Grimmett 1989). For p < p, 

while for p > P ,  

These results show that the free energy F ( p , , & )  is non-analytic along the 
percolation curve at PI = l o g [ ( l - p c ) / f i ]  = -i log2 and p2 = , l o g [ ( l - p C ) / p c ]  = 
0. This argument determines one point on the phase boundary. Since this point iS on 
the PI axis it corresponds to the solvent model. 
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We now use series analysis techniques to investigate the phase diagram. Using the 
exact enumeration data given in Madras et a[ (1990) we have computed Z,(p,,&) 
for n 6 19. For fixed PI, or for fixed p2 we calculate the fluctuations per site in 
k, i.e. ((k') - ( k ) * ) / n  and in s, i.e. ( ( s 2 )  - At fixed positive p, the 
fluctuations in s an0 in k show pronounced peaks at the Same value of p2 (see figure 
I@)) indicating a transition from the expanded to collapsed region as pz increases. 
At moderately large negative values of p2 the fluctuations in s show a sharp peak as 
0, increases, but there is no evidence of a peak in the fluctuations in k. Similarly, 
at moderately large negative values of &, there is a peak in the fluctuations in k 
as pz increases, but there is no peak in the fluctuations in J (see figure l(b)). We 
interpret these results as implying the existence of three phases, separated by three 
phase boundaries, meeting at the triple point, as shown schematically in figure 2. 
One phase (E) is expanded and the other two are compact, with small numbers of 
solvent contacts. However, in the compact phase (Ck), corresponding to positive or 
small negative d u e s  of pz ,  the clusters have large numbers of contacls, while in the 
compact phase (CJ, corresponding to more negative values of pz, the clusters have 
large numbers of cycles, and the transition between these phases reflects the exchange 
e: q c ! s  fer Mn'ncs. 
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F b m  1. Ructuations in k (Cull line) and in s (dashed line) for n = 19 as a function 
of f l z  for (a)  xed PI = 1 and (b) fixed PI = -4. 

Ct  

Figure I Skelch of the phase diagram in the E ( P t , P z )  plane. 

We expect three different values of the crossover exponent 6, one mrresponding 
to each of the three branches of the coexistence curve. We have estimated the 
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numerical values of 4, along the three coexistence curves and find +(E-C,) = 
0.60 i 0.03, +(E-C,) = 0.66 f 0.03 and + ( C c X k )  = 0.6 & 0.1. The error bars for 
these estimates of 6 overlap and we cannot rule out the possibility of a common 
value of 4. 

The general shapes of the coexistence culves can also be obtained from the 
numerical results. 7ne phase boundary between E and C, appears to be asymptotic 
to a line with gradient 2 For PI and Pz both large and positive we expect the 
clusters to have few cycles and to behave essentially as trees. It is not difficult to 
show that the phase boundary in a two-variable model for trees is a straight line with 
gradient 2 (Flesia 1992). Similarly, the phase boundary between E and C, appears 
to be asymptotic to a line with infinite slope, and that between C, and C, seems to 
be asymptotic to a line with slope close to zero. Along the phase boundary between 
E and C,, the clusters will be dominated by strong embeddings as pz --t -m. In 
this limit the number of contacts will be zero and there B a mapping behueen the 
cycle model and the solvent model (for strong embeddings) (Flesia 1992). Hence, we 
expect the critical temperature, in this limit, to be related to the critical temperature 
of the cycle model for strong embeddings (which is in agreement with our estimate), 
and we expect the crossover exponent along this branch to be the Same as that for 
the cycle model for strong embeddings (Derrida and Herrmann 1983, Vanderzande 
1992). In two dimensions the value of the crossover exponent for the cycle model for 
strong embeddings is thought to be 2/3 (Derrida and Herrmann 1983, Vanderzande 
1992) and this is consistent with our numerical estimate. 

For trees there is no phase corresponding to C, and for the cycle model in strongly 
embedded animals there is no phase corresponding to C,. In both trees and strongly 
embedded animals there is a relation between s and either IC or c which leads to a 
very simple phase diagram. However, the phase diagram for this two-variable model 
is quite rich. Tnis wiii be investigated in more detaii in a subsequent pubiication 
where we shall give a more precise numerical determination of the phase diagram. 

We are pleased to achowledge helpful conversations with Attilio Stella, and financial 
support from the SERC (grant number GR/G 05834) and from the NSERC of 
Canada. 
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